Terpenes and Polybromoindoles from the Marine Red Alga Laurencia decumbens (Rhodomelaceae)

by Nai-Yun Ji^a)^b), Xiao-Ming Li^a), Chuan-Ming Cui^a)^b), and Bin-Gui Wang^{*a})

 ^a) Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China (phone: +86-532-82898553; fax: +86-532-82880645; e-mail: wangbg@ms.qdio.ac.cn)
^b) Graduate School of the Chinese Academy of Sciences, Beijing 100049, P. R. China

Two new brominated diterpenes, namely, laurendecumtriol (1) and 11-O-deacetylpinnaterpene C (2), one new polybromoindole, 2,3,4,6-tetrabromo-1-methyl-1H-indole (7), and six known natural products were isolated and identified from the marine red alga *Laurencia decumbens*. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analysis as well as by comparison with literature data. Based on 2D-NMR experiments, the previously reported NMR data for pinnaterpene C (3) were reassigned.

Introduction. - The marine red-algal species of the genus Laurencia (order Ceramiales, family Rhodomelaceae) have been the subject of intensive studies due to the occurrence of a structurally diverse range of halogenated secondary metabolites [1]. Recently, the chemical investigation of Laurencia species from Chinese-sea waters, such as L. okamurai, L. tristicha, and L. similis were performed, which resulted in the isolation and identification of a variety of new structures [2-6]. As part of our continuing studies directed toward the discovery of novel naturally occurring halogenated metabolites from the genus Laurencia [5][6], we examined the chemical constituents of L. decumbens that was collected offshore Weizhou Island from the South China-Sea waters. From this species, we isolated and identified three new compounds including two new brominated diterpenes, named laurendecumtriol (1) and 11-O-deacetylpinnaterpene C1) (2), and one new polybromoindole, 2,3,4,6-tetrabromo-1-methyl-1H-indole (7). In addition, six known compounds, pinnaterpene C (3) [7], 1(10)-aristolene (4) [8], obtusane (5) [9], elatol (6) [10], 2,3,5-tribromo-1-methyl-1*H*-indole (8) [5][11], and 2,3,5,6-tetrabromo-1-methyl-1*H*-indole (9) [11], were also isolated and identified. The isolation and structural determination of compounds 1-9are the main subject of this paper. To the best of our knowledge, this is the first report on the chemical investigation of L. decumbens.

Results and Discussion. – The dried and powdered alga *L. decumbens* was extracted with CHCl₃/MeOH 1:1 (ν/ν). After solvent removal, the residue was further extracted with 95% aqueous EtOH. The concentrated extracts were partitioned between H₂O and AcOEt to afford the AcOEt-soluble fraction, which was purified by column chromatography (silica gel, *Sephadex LH-20*), and prep. TLC, to yield compounds **1**–**9**.

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

Compound **1** was obtained as colorless crystals. Structurally, this compound was closely related to luzodiol, a diterpene with a rarely described C-skeleton that was recently identified from *L. luzonensis* [12]. The IR spectrum of **1** indicated the presence of OH groups (3394 cm⁻¹). The ESI-MS (positive mode) exhibited a characteristic quasimolecular-ion cluster at m/z 427 and 425 (1:1; $M + Na]^+$), indicating the presence of one Br-atom in **1**. The molecular formula was determined to be $C_{20}H_{35}BrO_3$ by HR-ESI-MS (m/z 425.1656 ($[M+Na]^+$, $C_{20}H_{35}^{79}BrO_3Na^+$), suggesting three degrees of unsaturation. Based on the ¹H- and ¹³C-NMR (*Table*), HMBC (*Fig.*), and NOESY data, the chemical structure was established for compound **1**, which was named laurendecumtriol¹). However, the relative configuration at C(3) and C(15) of **1** remain unknown.

Figure. Selected HMBC correlations for 1, 2, and 7

Table. ¹*H- and* ¹³*C-NMR Data* (500 and 125 MHz, resp.; CDC₃) of *Compounds* **1**–3¹). Assignments were corroborated by ¹*H*,¹*H*-COSY, HMQC, and HMBC experiments.

		TIME CAPUTIERS		
Position	1	2	3	
	δ(H)	δ(C) δ(H)	$\delta(C) = \delta(H)$	δ(C)
$CH_2(1)$ or $H-C(1)$	$5.10 \ (dd, J = 10.8, 1.1),$ $5.23 \ (dd, J = 17.3, 1.1)$	112.1 (t) 4.11 (dd, $J = 11.8, 6.1$)	58.7 (d) $4.09 (dd, J = 11.7, 6.1)$	58.7 (d)
$H-C(2)$ or $CH_2(2)$	5.93 (dd, J = 17.3, 10.8)	144.9 (d) 2.02 - 2.05, 2.20 - 2.25 (2m)	32.5(t) 2.02 - 2.08, 2.19 - 2.25(2m)	32.5(t)
$C(2)$ of $CH_2(3)$ $CH_2(4)$ or $C(4)$	1.60 - 1.67 (m)	7.2.4 (8) 1.38 - 1.42, 1.02 - 1.00 (2m) 44.4 (1)	(m_2) $(0.1 - 0.0.1, -1.42, 1.00 - 1.00)$ $(3.1 (s)$	40.7 (1) 83.0 (s)
$CH_2(5)$ or $H-C(5)$	1.49 - 1.57 (m)	21.0(t) $1.36(d, J = 10.7)$	63.6~(d)~1.34~(d,J=10.5)	63.5(d)
H-C(6)	1.10 - 1.15 (m)	$49.6(d) \ 2.44-2.51(m)$	35.7 (d) 2.38 - 2.43 (m)	36.0(d)
$C(7)$ or $CH_2(7)$		72.9 (s) $1.33 - 1.37$, $2.10 - 2.13$ (2m)	33.7(t) 1.30–1.35, 2.02–2.08 (2m)	32.5(t)
$CH_2(8)$	1.44 - 1.50, 1.60 - 1.66 (2m)	42.0(t) $2.05-2.10, 2.13-2.18(2m)$	32.2(t) 1.30-1.35, 1.58-1.62(2m)	31.8(t)
$CH_2(9)$ or $C(9)$	2.00-2.04, 2.37-2.46 (2m)	30.0(t)	62.3 (s)	62.2(s)
$H-C(10)$ or $CH_2(10)$	$4.06 \ (dd, J = 12.8, 3.9)$	63.9 (d) 1.26 - 1.32 (m), 1.72 (d, J = 13.9)	52.3 (<i>t</i>) 1.87 (<i>dd</i> , $J = 14.4, 11.3$), 2.20–2.26 (<i>m</i>)	ı) 45.2 (t)
C(11)		43.9(s)	72.6(s)	83.4 (s)
$CH_{2}(12)$	$2.17 \ (d, J = 7.4)$	41.8 (t) $1.42 - 1.46, 1.61 - 1.65 (2m)$	39.7(t) 1.33 – 1.38, 2.38 – 2.43(2m)	37.0 (t)
H-C(13) or CH ₂ (13)	5.57 (dt, J = 15.4, 7.4)	121.1 (d) 1.99 - 2.02, 2.32 - 2.42 (2m)	30.5(t) $2.03-2.08, 2.18-2.22(2m)$	30.3(t)
H - C(14)	$5.81 \ (d, J = 15.4)$	$142.6 (d) \ 3.93 (dd, J = 12.7, 3.8)$	65.8 (d) 3.93 (dd, J = 12.6, 4.0)	(64.9 (d))
C(15)		70.9 (s)	36.6(s)	36.5 (s)
Me(16) or $CH_2(16)$	1.33(s)	$30.1 \ (q) \ 1.32 \ (d, J = 14.5),$	50.1 (t) 1.20 $(d, J = 14.8)$,	46.6 (t)
		1.79~(dd, J = 14.5, 3.4)	$2.57 \ (dd, J = 14.8, 3.6)$	
Me(17)	1.33(s)	$30.0(q) \ 1.33(s)$	$21.9(q) \ 1.29(s)$	21.9(q)
Me(18) or H-C(18)	1.12(s)	18.0 (q) 5.33 (br. s)	$99.1 \ (d) \ 5.32 \ (d, J = 4.2)$	(p) 0.66
Me(19)	1.17(s)	30.8 (q) 1.24 (s)	22.6(q) 1.10(s)	21.7(q)
Me(20)	1.30(s)	27.7 (q) 1.01 (s)	32.6(q) 1.02(s)	32.4(q)
AcO			2.01 (s)	22.8(q), 170.8(s)

The ¹³C-NMR (DEPT) spectrum of **1** indicated the presence of twenty C-atoms including five Me, six CH₂, and five CH groups, and four quaternary C-atoms. The ¹H, ¹H-COSY data were consistent with the four spin systems or structural units $CH_2 = CH$ (from $CH_2(1)$ to H - C(2)), CH_2CH_2CH (from $CH_2(4)$) to H-C(6)), CH_2CH_2CH (from $CH_2(8)$ to H-C(10)), and $CH_2CH=CH$ (from $CH_2(12)$ to H-C(14))¹). The HMBC cross-peaks Me(20)/C(2), C(3), and C(4), Me(19)/C(6), C(7), and C(8), Me(18)/C(6), C(10), C(11), and C(12), Me(17)/C(14), C(15), and C(16), and Me(16)/C(14), C(15), and C(17) established the connectivities of the above four structural units at quaternary C-atoms C(3), C(7), C(11), and C(15) (Fig.). The above spectral evidences confirmed the planar structure for 1, closely related to that of luzodiol [12]. However, the double C=C bond at C(14) in luzodiol was changed to C(13) in 1, and an additional OH group was present at C(15) of **1**. This was supported by the fact that in the ¹³C-NMR spectrum, the Me(16) and Me(17) signals, resonating at δ (C) 25.7 and 17.8 in luzodiol, were obviously downfield shifted to $\delta(C)$ 30.1 and 30.0 respectively, in **1**. In addition, the appearance of an oxygenated quaternary C-atom signal at $\delta(C)$ 70.9 for C(15) further supported this deduction. The relative configuration of **1** was determined upon analysis of the coupling constant and NOESY data. The large J(13,14) (15.4 Hz) indicated the *trans*-configuration for the C(13)=C(14) bond. In the NOESY experiment, both the CH₂(5) and Me(19) exhibited ¹H,¹H-NOESY correlations with Me(18), indicated their *cis*-orientation. The H-C(10) should be *trans*-oriented with respect to Me(18), since no NOESY cross-peak could be detected between H-C(10) and Me(18).

Compound **2** was obtained as colorless oil. The IR spectrum indicated the presence of OH groups (3405 cm⁻¹) in the molecule. The ESI-MS (positive mode) exhibited a characteristic quasimolecular-ion cluster at m/z 505, 503, and 501 (1:2:1; $[M + Na]^+$), indicating the presence of two Br-atoms. The molecular formula was determined to be $C_{20}H_{32}Br_2O_3$ by HR-ESI-MS (m/z 503.0593 ($[M + Na]^+$, $C_{20}H_{32}^{79}Br^{81}BrO_3Na^+$)), suggesting four degrees of unsaturation. Detailed comparison with pinnaterpene C (**3**) revealed that **2** differed from **3** only at C(11), *i.e.*, instead of the presence of an AcO group, an OH group was attached to C(11) of **2** [7]. The ¹H- and ¹³C-NMR (*Table*) and HMBC (*Fig.*) data further confirmed the chemical structure of compound **2** to be 11-*O*deacetylpinnaterpene C¹). Based on the very similar NMR spectral data, the configuration of **2** was assigned to be the same as for pinnaterpene C. However, it should be noted that, according to our 2D-NMR experiments (¹H,¹H-COSY, HMQC, and HMBC), the reported NMR data of pinnaterpene C (**3**) [7] should be, most likely, reassigned, and these reassigned data of **3** are also shown in the *Table*.

The ¹³C-NMR (DEPT) spectrum of **2** showed the presence of 20 C-atoms including three Me, eight CH₂, and five CH groups, and four quaternary C-atoms. The lack of signals for an Ac group in the ¹³C-NMR spectrum suggested that **2** was the deacetylated pinnaterpene C (**3**). This was clearly supported by δ (C) of C(11) which was higher-field shifted to 72.6, as well as by the adjacent lower-field shifted δ (C) of C(10), C(12), and C(16), as compared to the corresponding δ (C) of pinnaterpene C. The HMBC cross-peaks CH₂(10)/C(5), C(6), C(7), C(11), C(12), and C(16), Me(17)/C(3), C(4), and C(5), H–C(18)/C(1), C(4), and C(5), Me(19)/C(14), C(15), C(16), and C(20), and Me(20)/C(14), C(15), C(16), and C(19) (*Fig.*) were consistent with the proposed structure of **2**.

Compound **7** was obtained as a colorless crystal mixture with **8** and **9** (ratio *ca.* 2:10:1, based on NMR-signal intensities). They displayed one spot on TLC, and attempts to separate the three compounds by different column-chromatography steps as well as by prep. TLC with different solvent systems failed. Fortunately, **7**–**9** could be distinguished by the different NMR-signal intensities. Aided by 2D-NMR (¹H,¹H-COSY, HMQC, and HMBC (*Fig.*)) and MS analysis, the structure of **7** could be established as 2,3,4,6-tetrabromo-1-methyl-1*H*-indole.

Structural confirmation of **8** and **9** was readily achieved by the analysis of their NMR and MS data and by comparison with those reported in [5][11]. The low-resolution EI-MS of **7** exhibited a characteristic quasimolecular ion cluster at m/z 451, 449, 447, 445, and 443 (1:4:6:4:1), indicating the presence of 4 Br-atoms. The molecular formula was determined to be C₉H₅Br₄N by HR-FAB-MS (pos.; m/z 451.7150 ([M + H]⁺, C₉H₆⁸¹Br₄N⁺)), suggesting six degrees of unsaturation. The ¹³C-NMR (DEPT) data exhibited the presence of nine C-atoms, including one Me and two CH groups, and six quaternary Catoms. The ¹H-NMR spectrum showed three signals at δ (H) 7.47 (d, J = 1.5 Hz, H–C(5)), 7.41 (d, J = 1.5 Hz, H–C(7)), and 3.77 (s, Me–N(1)). Detailed comparison with the NMR data for the known compounds **8** [5][11] and **9** [11] suggested that **7** possessed a tetrabromoindole skeleton. The ¹H-NMR and ¹H,¹H-COSY plots exhibited two *m*-coupled aromatic proton signals (H–C(5) and H–C(7)), and the HMBC plot displayed cross-peaks for H–C(5)/C(4), C(6), C(7), and C(3a), H–C(7)/C(5), C(6), and C(3a), and Me–N(1)/C(2) and C(7a) (*Fig.*).

Polybromoindoles have been produced only by few *Laurencia* species, such as *L. similis* and *L. brongniartii* [5][11]. To the best of our knowledge, *L. decumbens* is the third *Laurencia* species producing polybromoindoles, which may be formed by a biosynthetic pathway similar to those present in the above two species. The polybromoindole-type metabolites suggest some affinity between these species. In addition, our results represent an unusual example of the co-occurrence of highly brominated indole alkaloids, halogenated and nonhalogenated sesquiterpenes, and brominated diterpenes in a single *Laurencia* species, *L. decumbens*.

This work was financially supported by the National Natural Science Foundation of China (No. 30530080), by the National 'Marine 863 Project' (No. 2007AA09Z403), and by the Department of Science & Technology of Shandong Province (No. 2006GG2205023). The authors are grateful to Prof. B.-M. Xia, Institute of Oceanology, Chinese Academy of Sciences, for identifying the algal material. The program Bairen Jihua from the Chinese Academy of Sciences (awarded to B.-G. W.) is also gratefully acknowledged.

Experimental Part

General. Column chromatography (CC): silica gel (*Qingdao Haiyang Chemical Group Co.*; 200–300 mesh) and Sephadex LH-20 (Sigma). TLC: precoated silica gel plates (*Qingdao Haiyang Chemical Group Co.*; *GF-254*). M.p.: SGW-X-4 micro melting-point-apparatus; uncorrected. Optical rotation: Atago-Polax-L polarimeter. IR Spectra: Nicolet-NEXUS-470 spectrophotometer; $\tilde{\nu}_{max}$ in cm⁻¹. NMR Spectra: Bruker-Avance-500 spectrometer; at 500 (¹H) and 125 MHz (¹³C); δ in ppm, J in Hz. Low- and high-resolution MS: VG-Autospec-3000 spectrometer; in m/z (rel. %).

Algal Material. The red alga L. decumbens KÜTZING was collected from South-China-Sea waters offshore Weizhou Island in April 2006, and was identified by Prof. B.-M. Xia, Institute of Oceanology, Chinese Academy of Sciences (IOCAS). A voucher specimen (HZ0604a) was deposited at the Key Laboratory of Experimental Marine Biology of the IOCAS.

Extraction and Isolation. The dried and powdered alga *L. decumbens* (500 g) was extracted with CHCl₃/MeOH 1:1(v/v). After solvent removal, the residue was further extracted with 95% aq. EtOH. The concentrated extracts were combined and partitioned between H₂O and AcOEt. The AcOEt-soluble fraction was purified by CC (SiO₂, petroleum ether AcOEt gradient): *Fractions I – VI. Fr. I* (eluted with petroleum ether) was further purified by prep. TLC (cyclohexane): **4** (15.1 mg), **5** (3.6 mg), and **7/8/9** (9.0 mg). *Fr. II* (eluted with petroleum ether/AcOEt 30:1) was also purified by prep. TLC (petroleum ether): **6** (11.8 mg). *Fr. IV* (eluted with petroleum ether/AcOEt 5:1) was further separated by CC (*SiO₂* and *Sephadex LH-20*, CHCl₃/MeOH 1:1) and prep. TLC: **3** (13.1 mg). *Fr. V* (eluted with petroleum ether/AcOEt 2:1) was further separated by CC (SiO₂ and *Sephadex LH-20*, CHCl₃/MeOH 1:1) and prep. TLC: **1** (5.4 mg) and **2** (4.4 mg).

Laurendecumtriol (= rel-(1R,2R,3R,6R)-3-Bromo- α -ethenyl-6-hydroxy-2-[(2E)-4-hydroxy-4-meth-ylpent-2-en-1-yl)- α ,2,6-trimethylcyclohexanepropanol; 1): Colorless crystals. M.p. 119–121⁰. [α]_D¹⁸ = +2.5 (c = 0.17, CHCl₃). IR (KBr): 3394, 2971, 2932, 1640, 1457, 1374, 1148, 900. ¹H- and ¹³C-NMR: *Table*.

ESI-MS: 427, 425 (1:1, $[M + Na]^+$). HR-ESI-MS: 425.1656 ($[M + Na]^+$, $C_{20}H_{35}^{79}BrO_3Na^+$; calc. 425.1667).

11-O-Deacetylpinnaterpene C (=rel-(1R,3aR,4R,7S,7aR,9S)-4-Bromo-1-[[(1R,4R)-4-bromo-1-hydroxy-3,3-dimethylcyclohexyl]methyl]-octahydro-7-methyl-7,3a-(epoxymethano)-3aH-inden-9-ol; **2**): Colorless oil. [a]₁^B = +6.6 (c = 0.22, CHCl₃). IR (KBr): 3405, 2963, 2933, 1472, 1375, 1201, 1087. ¹Hand ¹³C-NMR: *Table*. ESI-MS: 505, 503, 501 (1:2:1, [M + Na]⁺). HR-ESI-MS: 503.0593 ([M + Na]⁺, C₂₀H₃₂⁷⁹Br⁸¹BrO₃Na⁺; calc. 503.0595).

2,3,4,6-*Tetrabromo-1-methyl-I*H-*indole* (7): Colorless crystals. IR (KBr): 1500, 1460, 1417, 781. ¹H-NMR (500 MHz, CDCl₃): 747 (d, J = 1.5, H–C(5)); 741 (d, J = 1.5, H–C(7)); 3.77 (s, Me–N(1)). ¹³C-NMR (125 MHz, CDCl₃): 118.5 (s, C(2)); 92.5 (s, C(3)); 113.9 (s, C(4)); 128.2 (d, C(5)); 116.0 (s, C(6)); 112.3 (d, C(7)); 123.0 (s, C(3a)); 137.5 (s, C(7a)); 32.9 (q, Me–N(1)). EI-MS: 451 (15), 449 (64), 447 (100), 445 (70), 443 (18) (M^+); 436 (3), 434 (12), 432 (18), 430 (13), 428 (4); 370 (4), 368 (12), 366 (13), 364 (5); 289 (14), 287 (27), 285 (15); 208 (15), 206 (15); 127 (22); 112 (26). HR-FAB-MS (pos.): 451.7150 ([M + H]⁺, C₉H₆⁸¹Br₄N⁺; calc. 451.7152).

REFERENCES

- K. L. Erickson, in 'Marine Natural Products', Ed. P. J. Scheuer, Academic Press, New York, 1983, Vol. 5, p. 131.
- [2] J. Sun, D. Shi, M. Ma, S. Li, S. Wang, L. Han, Y. Yang, X. Fan, J. Shi, L. He, J. Nat. Prod. 2005, 68, 915.
- [3] S.-C. Mao, Y.-W. Guo, Helv. Chim. Acta 2005, 88, 1034.
- [4] S.-C. Mao, Y.-W. Guo, J. Nat. Prod. 2006, 69, 1209.
- [5] N.-Y. Ji, X.-M. Li, L.-P. Ding, B.-G. Wang, Helv. Chim. Acta 2007, 90, 385.
- [6] N.-Y. Ji, X.-M. Li, Y. Zhang, B.-G. Wang, Biochem. Syst. Ecol. 2007, 35, 627.
- [7] A. Fukuzawa, Y. Kumagai, T. Masamune, A. Furusaki, T. Matsumoto, C. Katayama, *Chem. Lett.* 1982, 11, 1389.
- [8] F. Nagashima, A. Tamada, N. Fujii, Y. Asakawa, *Phytochemistry* 1997, 46, 1203.
- [9] A. G. González, J. D. Martín, V. S. Martín, M. Norte, Tetrahedron Lett. 1979, 20, 2719.
- [10] G. M. König, A. D. Wright, J. Nat. Prod. 1997, 60, 967.
- [11] G. T. Carter, K. L. Rinehart Jr., L. H. Li, S. L. Kuentzel, J. L. Connor, *Tetrahedron Lett.* 1978, 19, 4479.
- [12] M. Kuniyoshi, P. G. Wahome, T. Miono, T. Hashimoto, M. Yokoyama, K. L. Shrestha, T. Higa, J. Nat. Prod. 2005, 68, 1314.

Received May 14, 2007